
Continuous stochastic Schrödinger equations and localization

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys. A: Math. Gen. 30 7557

(http://iopscience.iop.org/0305-4470/30/21/026)

Download details:

IP Address: 171.66.16.110

The article was downloaded on 02/06/2010 at 06:04

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/30/21
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.30 (1997) 7557–7571. Printed in the UK PII: S0305-4470(97)84862-7

Continuous stochastic Schr̈odinger equations and
localization

M Rigo, F Mota-Furtado and P F O’Mahony
Department of Mathematics, Royal Holloway, University of London, Egham, Surrey TW20
0EX, UK

Received 9 June 1997

Abstract. The set of continuous norm-preserving stochastic Schrödinger equations associated
with the Lindblad master equation is introduced. This set is used to describe the localization
properties of the state vector toward eigenstates of the environment operator. Particular focus is
placed on determining the stochastic equation which exhibits the highest rate of localization for
wide open systems. An equation having such a property is proposed in the case of a single non-
Hermitian environment operator. This result is relevant to numerical simulations of quantum
trajectories where localization properties are used to reduce the number of basis states needed
to represent the system state, and thereby increase the speed of calculation.

1. Introduction

A quantum system interacting with its environment can be described, in the Markovian
approximation, by two complementary approaches. In the first and most commonly used [1–
3], the system is represented by a density operator and its evolution is described by a master
equation. In the second a state vector represents the system and a stochastic Schrödinger
equation describes the state evolution [4–6]. These two treatments are equivalent in the
following sense: for all times an ensemble of state vectors generated by a stochastic
Schr̈odinger equation reproduces, on average, the density operator generated by the master
equation. The correspondence is not uniquely defined, in that for a single master equation
there are many associated stochastic equations.

Stochastic-state vector equations, also calledunravellingsof the master equation, have
been introduced in different contexts and with different interpretations. In the fundamental
theory of quantum measurement, stochastic equations have been used to describe the general
dynamical process of the state collapse into an eigenstate of the measured observable,
i.e. localization [4, 7–13]. In quantum optics, stochastic Schrödinger equations have been
used to describe the system state conditioned by measurement outcomes. In this context,
an unravelling corresponds to a specified measurement scheme, such as photon counting,
heterodyne or homodyne detection [6, 14]. More generally, in the field of open quantum
systems, unravellings have been used as an efficient numerical method to solve the master
equation [15–26].

The present work is motivated by a recent study of a quantum system in interaction
with a thermal bath using the quantum jump (QJ) unravelling [27]. It is shown that, under
some assumptions valid in the classical limit, the QJ trajectories, i.e. the realization of
the stochastic process, approach a diffusive limit very similar to the one exhibited by the
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quantum state diffusion (QSD) trajectories. Since diffusion is expected to be a general
feature associated with the emergence of classicality, a description of the whole set of
continuous unravellings becomes important. This set is introduced in a unified way in the
following section. We will show that each continuous unravelling can be characterized very
simply by specifying its noise correlations. The set of continuous unravellings is then used
to study how quantum state properties, such as localization, evolve when the unravelling
changes.

A very important characteristic of quantum trajectories which has both physical and
numerical consequences is the localization of quantum states toward eigenstates of the
environment operator. Working with the real noise (RN) unravelling, Gisin [7] has shown
that for an arbitrary Hermitian Lindblad operatorL the state vectors concentrate on the
eigenspace ofL. Percival [9] extended this result by giving a proper definition of the
ensemble localization of an arbitrary operator and then providing analytical bounds for the
rate of self-localization of Hermitian and non-Hermitian Lindblad operators for the QSD
unravelling. For a dissipative interaction, Garraway and Knight [28, 29] have presented
numerical simulations of the localization process using the QJ and QSD unravellings.
Starting from different quantum states, such as a superposition of two coherent states,
a Fock state and a squeezed ground state, they have shown that such states are highly
sensitive to dissipation. They also illustrated the localization process. Recently they have
applied their results to describe the evolution of a Schrödinger cat state in a Kerr medium
where localization competes with nonlinear effects [30] (see also [31]).

For numerical simulation of open quantum systems, individual trajectories have proven
advantageous over density operator computations. The main advantages stem from the fact
that less space is needed to store and propagate in time a state vector than a density matrix.
In addition, for trajectory methods one can exploit the localization property to reduce the
number of basis states needed to represent the state vector, thus significantly reducing the
time needed to calculate quantum trajectories. For QJ unravellings, when many Lindblad
operators are present, it is well known that one can perform a unitary transformation to
select one of the QJ unravellings, in such a way as to minimize the number of basis states
needed (see [22] for an application of this property). The localization of the state vector for
QSD has been exploited in the mixed representation of Steimleet al [23] and the moving
basis of Schacket al [24–26].

In section 3 we use the set of continuous unravellings to describe localization properties
for a single environment operator. Several well known results are recovered for a Hermitian
operator [4, 32]. In the case of a non-Hermitian operator the minimal rate of localization
introduced for the QSD unravelling [9, 11, 12] is extended to the complete set showing
that localization is a general feature shared by all the continuous unravellings, and a new
unravelling is introduced. Some theoretical arguments supported by numerical simulations
suggest that this new unravelling possesses the highest localization rate.

In the present work we make use of the freedom of choice for the noise correlations
to obtain the continuous unravelling which localizes the state vector the most. This
transformation should not be confused with the unitary transformation discussed above.
These two transformations are complementary and can be used together. At the end of
section 3 we compare the localization properties of QSD and of our proposed unravelling.

Finally, in section 4 we summarize our results and draw conclusions about the
applicability of the set of continuous unravellings to the study of the quasi-classical limit
of open quantum systems.
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2. Continuous unravellings

We proceed following closely the derivation of the quantum-state-diffusion unravelling by
Gisin and Percival [8]. In this work, a general stochastic differential equation with a complex
Wiener process is used as a starting point. The drift and noise terms are then specified by
asking that the stochastic differential equation recovers on average the Lindblad master
equation for the density operatorρ of the system

ρ̇ = − i

h̄
[H, ρ] +

J∑
j=1

(
LjρL

†
j −

1

2
{L†jLj , ρ}

)
(1)

whereH is the system Hamiltonian andLj (j = 1, . . . , J ) the set of Lindblad operators
which represent the influence of the environment. (Since the master equation (1) is valid
under a Markovian approximation, all the stochastic differential equations considered apply
only within this approximation.) The other conditions needed to specify the drift and noise
terms are that the state remains normalized and that the stochastic equation shares the
same invariance properties under unitary transformations as the master equation. This last
constraint is used to prove the uniqueness of QSD among the set of continuous unravellings.
Removing the constraint of invariance under unitary transformations among the Lindblad
operators, we obtain the set of continuous norm-preserving unravellings related to the master
equation.

2.1. Derivation of the stochastic Schr¨odinger equations

We start by considering a general stochastic differential equation of the following Itô form
which gives the variation|dψ〉 of the state vector|ψ〉 in a time dt

|dψ〉 = |v〉 dt +
J∑
j=1

|uj 〉
( N∑
n=1

αjn dWjn

)
(2)

where|v〉 and|uj 〉 are vectors,αjn are complex numbers and dWjn independent real Wiener
processes [33] which obey the following relationships

M(dWjn) = 0 dWjn dWkm = δjkδmn dt dWjn dt = 0 (3)

whereM represents the ensemble average. The two conditions to be respected by the
previous equation (2) are (i) the state is normalized for all times〈ψ |ψ〉t = 1 and (ii) for
each time, the mean of the projector associated to the state|ψ〉 gives the density matrix
ρ = M(|ψ〉〈ψ |) with the density matrixρ evolving according to the master equation in
Lindblad form (1). In the following, these two conditions will be used to relate the drift
term |v〉 and the stochastic term|uj 〉 to the state|ψ〉 as well as giving constraints on the
complex numbersαjn. Note that theαjn may also depend on the state|ψ〉 and on timet .

By following closely the QSD derivation given in [8], we obtain the expression for the
drift term

|v〉 = − i

h̄
H |ψ〉 − 1

2

∑
j

(L
†
jLj + 〈L†j 〉ψ 〈Lj 〉ψ − 2〈L†j 〉ψLj )|ψ〉 (4)

where〈Lj 〉ψ = 〈ψ |Lj |ψ〉 is the expectation value ofLj for the state|ψ〉. The drift term|v〉
is the same as that obtained in the QSD derivation, but the stochastic vectors|uj 〉 become

|uj 〉 = 1√∑
n |αjn|2

∑
k

βjk(Lk − 〈Lk〉ψ)|ψ〉 j = 1, . . . , J (5)
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which differs from the QSD derivation by the introduction of the normalization factor
(
∑

n |αjn|2)−1/2 and the set of complex numbersβjk. The latter are arbitrary coefficients of
a J × J unitary matrix which arises due to the freedom of choice in the linear combination
of vectors(Lk − 〈Lk〉ψ)|ψ〉 used to express|uj 〉.

Finally one obtains the equation for the state vector increment

|dψ〉 = − i

h̄
H |ψ〉 dt − 1

2

J∑
j=1

(
L
†
jLj + 〈L†j 〉ψ 〈Lj 〉ψ − 2〈L†j 〉ψLj

)
|ψ〉 dt

+
J∑
k=1

(Lk − 〈Lk〉ψ)|ψ〉 dζk. (6)

This equation shows that all the indeterminacy due to the coefficientsαjn and to the unitary
transformation(βjk) can be included in the noise terms dζj which are given by

dζk =
J∑
j=1

βjk

∑
n αjn dWjn√∑

n |αjn|2
. (7)

It can be easily seen that they have zero meanM(dζj ) = 0 and correlations

dζj dζ ∗k = δjk dt and dζj dζk = cjk dt (8)

where cjk are correlation coefficients related to the unitary transformation(βjk) and the
noise coefficientsαin in the following way

cjk =
J∑
i=1

βijβikci with ci =
∑

n α
2
in∑

n |αin|2
(9)

and ci are complex numbers inside the unit circle|ci | 6 1 for all i = 1, . . . , J (see
the appendix). Note that although the stochastic process is completely specified by the
numbersβjk and αin, that specification will be non-unique in that all sets of numbers
that yield the same correlation coefficientscjk through equation (9) will describe the same
stochastic process [33]. Thus an unravelling is completely specified when the correlation
coefficients cjk are given. This result provides a natural classification for continuous
stochastic Schrödinger equations associated with the completely positive master equation (1).
In [34] a similar classification is given for all (Markovian) positive master equations but only
for two-dimensional Hilbert spaces. This suggests that the same classification procedure can
be extended to every positive master equation in arbitrary dimensions.

In the absence of a unitary transformation(βjk = δjk) and with only one Wiener process
N = 1, the complex noises dζj are necessarily of the form dζj = eiφj dWj1. For φj = 0 we
recover the real noise unravelling and forφj = π/2 the imaginary noise unravelling. The
present work shows not only that any phaseφj can be chosen but also that the phase can
be a smooth function of the state|ψ〉 and of the time. The QSD unravelling is recovered
taking two Wiener processes (N = 2) with dζj = (dWj1 + i dWj2)/

√
2 for all j . In this

special case the correlationscjk vanish.

2.2. Unitary transformation

Let us introduce the following unitary transformation among Lindblad operators

Lj =
∑
k

ujkL̃k − λj1I (10)



Continuous stochastic Schr¨odinger equations and localization 7561

whereujk and λj are complex numbers and(ujk) a unitary matrix [8, 9, 35]. With this
transformation the noise terms become dζ̃k =

∑
j ujk dζj with the correlations

dζ̃j dζ̃ ∗k = δjk dt and d̃ζj dζ̃k =
J∑

m,n=1

umjunkcmn dt. (11)

These correlations will depend on the unitary transformation(ujk) unless all the correlation
factors vanish, i.e.cjk = 0. Since(βjk) is itself a unitary transformation, a necessary
condition for invariance under unitary transformation is given by

cj = 0 for all j = 1, . . . , J. (12)

When only one Wiener processN = 1 is present, the unitary invariance condition (12)
implies αj1 = 0 for all j . As a consequence there is no invariant unravelling with only
one Wiener process. With two Wiener processesN = 2, the invariance condition becomes
α2
j1 + α2

j2 = 0. The norm of the two complex numbers is the same|αj1| = |αj2| and the
phases are related byφj1 − φj2 = π/2+ nπ wheren is any integer number. The simplest
casen = 0 leads to

dζj = eiφj

(
dWj1+ i dWj2√

2

)
(13)

which correspond to the complex noise used in the QSD unravelling when the phasesφj are
set to zero. The simplest case which can satisfy the invariance condition (12) is given by
the QSD unravelling. The phasesφj and other choices ofn introduce only irrelevant phase
factors which can be neglected. This is the uniqueness result of Gisin and Percival [8] for
QSD. If one considers more than two Wiener processesN > 3, it is possible to construct
other unravellings invariant under unitary transformation. For instance:

dζ = dW1+ eiπ/3 dW2+ e−iπ/3 dW3√
3

(14)

where we have omitted the indexj and the phase factor. Since all these unravellings have
the same correlations dζ 2 = 0 and|dζ |2 = dt , they are equivalent [33] and can be replaced
by the QSD unravelling.

3. Localization

As an application of the set of continuous unravelling obtained in the present work, one
can compute the rate of self-localization of a single environment operatorL for a wide-
open system, i.e.H = 0, and determine the effect of the noise correlation on the rate of
self-localization. The rate of self-localization is defined as the rate at which the ensemble
average of the quantum mean-square deviation decays [9]. It is also the ensemble average
rate at which the state vector|ψ〉 tends towards one of the (right-) eigenstates of the
Lindblad operator. The quantum mean-square deviation† of the operatorL is defined as
σ 2(L) = 〈L†L〉ψ − 〈L†〉ψ 〈L〉ψ . More generally the quantum covariance of two operators
for the state|ψ〉 is σ(A,B) = 〈A†B〉ψ −〈A†〉ψ 〈B〉ψ [9]. Note that the quantum covariance
of L with itself is just the quantum mean-square deviationσ 2(L) = σ(L,L). We restrict
our attention to a wide-open system because we want to describe the localization process,
independently of the action of the Hamiltonian. This, clearly, is only a first step towards a
proper understanding of localization which should involve Hamiltonian effects as well.

† Note that the quantum mean-square deviation is not an ensemble average.
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3.1. Hermitian environment operator

For a wide-open system with a Hermitian environment operatorL = L† the state vector
|ψ〉 evolves according to

|dψ〉 = − 1
2(L

†L+ 〈L†〉ψ 〈L〉ψ − 2〈L†〉ψL)|ψ〉 dt + (L− 〈L〉ψ)|ψ〉 dζ (15)

where dζ is a noise of the kind previously described by (7) and (8) with an associated
correlation factorc given by dζ 2 = c dt . When the state evolves according to equation (15)
we can compute the change in the expectation value ofL

d〈L〉ψ = 2σ 2(L)Re(dζ ) (16)

and the change in the quantum mean-square deviation

dσ 2(L) = −2σ 2(L)2(1+ Re(c)) dt + 2σ(L1L1,L)Re(dζ ) (17)

where we have used the notationL1 = L − 〈L〉ψ . The diffusion of the expectation value
〈L〉ψ and the quantum mean-square deviation is produced only by the real part of the noise
term dζ .

Taking the ensemble mean shows that the expectation valueM〈L〉ψ = Tr(ρL) remains
constant and the quantum mean-square deviation evolves as

M
dσ 2(L)

dt
= −2(1+ Re(c))M(σ 2(L)2). (18)

The noise correlationc is a characteristic signature of the chosen unravelling. Forc = 0,
the quantum-state diffusion result, giving a minimal localization rate of 2, is recovered
[9]. In this case, as in almost all cases, the mean-square deviation tends to zero, thus
the state|ψ〉 evolves towards one eigenstate ofL. The RN unravellingc = 1 is clearly
the one which gives the highest rate of self-localization. As a consequence, for numerical
simulations involving an arbitrary Hamiltonian and one Hermitian environment operator, the
RN unravelling should be used since it will produce the fastest localization (for continuous
unravellings). In the opposite case to the RN unravelling, if one uses the imaginary noise
unravelling c = −1, the mean localization rate vanishes and the state does not evolve
towards an eigenstate ofL. Recovering these well known results [4, 35] confirms the
validity of equation (15).

3.2. Non-Hermitian environment operator

We consider the case of a single non-Hermitian Lindblad operator. Since this case is more
difficult to treat, we restrict ourselves to the more specific case of an annihilation operator
L = √κa. As for a Hermitian operator, we want to determine which is the unravelling with
the highest localization rate and find out if there is any unravelling which does not localize.

The state vector evolves according to equation (15) and the change in the quantum
mean-square deviationσ 2(a) = 〈a†a〉ψ − 〈a†〉ψ 〈a〉ψ is given by

dσ 2(a) = −κ(σ 2(a)+ σ 2(a)2+ |σ(a†, a)|2+ 2σ 2(a)Re{cσ (a†, a)}) dt

+2
√
κ Re{(σ (a†a, a)− 〈a†〉ψσ(a†, a)− 〈a〉ψσ 2(a)) dζ } (19)

which involves the quantum covarianceσ(a†, a) = 〈a2〉ψ−〈a〉2ψ . The equation forσ(a†, a)
can also be derived to give

dσ(a†, a) = −κ((1+ 2σ 2(a))σ (a†, a)+ cσ (a†, a)2+ c∗σ 2(a)2) dt

+2
√
κ Re{(σ (a2, a)− 2〈a†〉ψσ 2(a)) dζ }. (20)
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For the QSD unravellingc = 0, the two equations (19) and (20) are known to describe the
localization of the state|ψ〉 towards a coherent state in the case of a harmonic oscillator.
Furthermore, this localization is known to be globally stable [12].

Taking the ensemble mean over equation (19) removes the noise terms but introduces
statistical correlations since the statistical mean of a product is in general different from the
product of the statistical means. Thus one cannot obtain an immediate result for the mean
rate of localization. However, one can notice that the drift part of dσ 2(a) can be written as
a sum of positive terms:

σ 2(a)+ (σ 2(a)− |σ(a†, a)|)2+ 2σ 2(a)|σ(a†, a)|
(

1+ Re

{
c
σ (a†, a)

|σ(a†, a)|
})

(21)

the third term of this expression being positive since|c| 6 1. As a consequence, the
argument for global stability of coherent states,

M
dσ 2(a)

dt
6 −κMσ 2(a) (22)

is valid for all the continuous unravellings. A localization rate ofκ, associated with
the exponential decay of quantum correlationsMσ 2(a) ' exp(−κt), is expected to be
independent of the choice of unravelling. This result shows that, for an annihilation operator,
all unravellings localize andκ provides a minimal bound, independent of the unravelling,
for the ensemble mean localization rate.

For a Hermitian operator, the unravelling which localizes the most was easy to find since
the evolution of the quantum mean-square deviation is not coupled to any other moment.
Furthermore the correlation factorc factorizes, making the unravelling independent of the
state. In the present case the situation is more complex, since none of these two simplifying
conditions is satisfied. In the case of an annihilation operator, we adopt the following
technique. Instead of considering the localization of an arbitrary state|ψ〉, we restrict our
attention to squeezed states. We will show that every unravelling (15) withL = √κa
preserves the set of squeezed states, i.e. if the initial state is a squeezed state it will evolve
into a squeezed state. This has been shown for the QSD unravelling in [12]. The unravelling
which reduces the squeezing most efficiently is determined. Finally, some arguments will
be given as to why this unravelling should be the one with the highest localization rate for
an arbitrary initial state.

Squeezed states are defined as the states|γt , αt 〉 which satisfy the relation

(a − γta† − αt)|γt , αt 〉 = 0 (23)

whereγt andαt are complex numbers which label the squeezed state|γt , αt 〉 [36]. When
the squeezing parameterγt vanishes, squeezed states reduce to coherent states. Amongst
the properties of squeezed states, we will use for our present purposes only the relations
between the mean-square deviation and the squeezing parameter

σ 2
s (a) =

|γt |2
1− |γt |2 = γtσs(a

†, a)∗ (24)

where the indexs specifies that the mean-square deviation is taken with respect to the
squeezed state|γt , αt 〉. This last relation tells us that the mean-square deviation depends
only on the squeezing parameter.

A condition to check if squeezed states are preserved can be obtained by differentiating
(23) [11, 35]. In order to simplify the calculation, the Stratonovich formalism is used. In
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this formalism, the usual differentiation rules apply. Thus from (23), a state|ψ〉 initially
squeezed will remain squeezed if it is possible to write

(a − γta† − αt)|dψ〉 = (dγta† + dαt)|ψ〉 (25)

where|dψ〉 is to be expressed in Stratonovich form. From equation (15) and using the usual
conversion formulaX ◦ dY = X dY + 1

2dX dY between the Stratonovich and Itô formalism
[37], one can express the differential increment for the state vector|ψ〉 as

|dψ〉 = − 1
2{L†L− 2〈L†〉ψ(L− 〈L〉ψ)}|ψ〉 dt
− c

2
{L2− 〈L2〉ψ − 2〈L〉ψ(L− 〈L〉ψ)}|ψ〉 dt + (L− 〈L〉ψ)|ψ〉 ◦ dζ. (26)

Inserting this expression in condition (25), one finds not only that squeezed states are
preserved but also the equations for the squeezing parameters are

dγt = −κγt (1+ cγt ) dt (27)

dαt = −κ
2
αt dt + κγt 〈a†〉s(1+ cγt ) dt +√κγt dζ (28)

written in Itô form. Since the evolution of the squeezing parameterγt is deterministic, it is
easy to find the unravelling which produces the fastest squeezing decay. It is given by the
following correlation factor

c = γ ∗t
|γt | . (29)

Note that this unravelling depends on the state itself. In order to produce the maximal decay
in squeezing, the noise term in the stochastic Schrödinger equation has to evolve according
to the prescription given in (29). For such an unravelling, the norm of the correlation factor
c is kept constant at its maximal value|c| = 1 and the phase varied in time along each
single trajectory in order to minimize the squeezing.

For all the unravellings with a correlation factor having such a phase but an arbitrary
norm {cr = rγ ∗t /|γt |, r ∈ [0, 1]}, the localization rate can be easily computed. This set
includes QSD which asr = 0 and the adaptive unravelling (29) which hasr = 1. For every
unravelling in this set, the squeezing parameterγt decays asγt ' e−κt for large enough
times. Using the relation (24), one obtains

σ 2(a) ' e−2κt σ (a†, a) ' e−κt for t � κt. (30)

Compared with the minimal localization rate ofκ, this result shows that the unravellings
which have a correlation factorc with the proper phase, i.e. all unravellings in the above-
mentioned set, produce a localization rate on squeezed states which is twice the minimal
localization rate. Furthermore, the quantum mean-square deviationσ(a†, a) decays at the
same rate as the energy. Thus, the time needed for a squeezed state to become a coherent
state is of the same order as the dissipation time, making the squeezed state a favourite
basis for numerical simulations.

Squeezed states are frequently represented in phase space using distribution functions.
TheQ distribution of a squeezed state is a Gaussian whose contour forms an ellipse. It
can easily be seen that the phase (29) of the correlation factorc is equal to ei2φ whereφ
is the angle between the real axis and the major axis of the ellipse. The correlation factor
c is defined, irrespective of its norm, as the square of the noise term dζ (see (8)). Thus
the phase of the noise term dζ , which produces the fastest squeezing decay, is the same as
the phase of the major axis of the ellipse, this later being defined as eiφ . One can say that
the unravelling varies in time in order to distribute the noise fluctuations along the axis of
largest spread of the squeezed state.
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If the system state is not a squeezed state, the previous derivation does not apply
anymore. Nevertheless, we can try to generalize the result for an arbitrary state. Using the
relation (24) between the squeezing parameter and the mean quantum deviation, the same
unravelling can be specified as

c = σ(a†, a)∗

|σ(a†, a)| . (31)

This expression allows us to generalize the criteria obtained for a squeezed state to an
arbitrary state. This choice corresponds to fluctuations distributed along the major axis of
the ellipse which will give the best approximation to the state distribution in phase space.
Another interesting aspect of the unravelling (31) is that it is also the one which maximizes
the drift term (21) in the dσ 2(a) equation. This is not a sufficient condition to ensure
this unravelling localizes the most since this condition neglects statistical correlations. As
soon as statistical correlations can be neglected, this unravelling will produce the highest
localization rate.

These two arguments show that for distributions which can be well approximated by
ellipses, the unravelling (29) will give the highest localization rate. What happens with
other states? To answer this question, numerical simulations have been employed. Using
three different initial states, and three different unravellings, the evolution in time of the
quantum mean-square deviationσ 2(a) has been computed. The ensemble averageMσ 2(a)

taken over 1000 trajectories is represented in figures 1–3. The initial states chosen are:
a Fock state|24〉, a superposition of Fock states(|23〉 + |25〉)/√2 and a superposition of
coherent states(|α〉+ |−α〉)/√2 with α = 4. The unravellings chosen are: the unravelling
with the proper phase (31), QSD withc = 0 and RN withc = 1.

All our simulations confirm that such quantum states are very unstable under the effect
of dissipation [29], this being independent of the chosen unravelling. After a small time
κt < 1, the state becomes a squeezed state to a very good approximation. During the
transition from an arbitrary initial state to an almost squeezed state, the rate of localization

0
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10
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20
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0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

M
 σ

2 (a
)

κt

Figure 1. Ensemble average of the quantum mean-square deviationσ 2(a) showing the short
time-scale localization. The initial state is the Fock state|24〉. Each curve represent a different
unravelling: the unravelling (31) (——), QSD (- - - -) and RN (—· —). The ensemble average
is computed using 1000 trajectories. The errors bars indicate the 95% confidence intervals.



7566 M Rigo et al

0

5

10

15

20

25

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

M
 σ

2 (a
)

κt

Figure 2. As figure 1, but with the initial state in a superposition of two Fock states
2−1/2(|23〉 + |25〉).
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Figure 3. As figure 1, but with the initial state in a superposition of two coherent states
2−1/2(|α〉 + | − α〉) with α = 4.

is very high.
Once the state has become a squeezed state, the mean rate of localization is

approximately constant for all the unravellings. The localization rate always lies in between
the minimal rateκ and the squeezed state rate 2κ (see figure 4). The latter occurs only
for the set of unravellings with the appropriate phase. For the unravellings with a different
choice of phase, the termcγt in equation (27) will give a negative contribution and produce
a lower localization rate. In all numerical simulations, the new unravelling produced the
highest localization.

Finally, one can try to generalize the previous result to an arbitrary Lindblad operator.
In this case, the unravelling which localizes the most will be the one with a correlation
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Figure 4. As figure 2, but for a longer time scale.

factor given by

c = σ(L†, L)∗

|σ(L†, L)| . (32)

For a Hermitian operatorq, this expression reproduces the result previously obtained, namely

c = σ(q†, q)∗

|σ(q†, q)| =
σ 2(q)

|σ 2(q)| = 1 (33)

for the RN unravelling. For the annihilation operatorL = a equation (32) is equivalent to
(31).

3.3. Numerical simulations

Instead of trying to justify further the unravelling (32) as the most localizing one for an
arbitrary Lindblad operator we look for an estimate of the improvement produced by using
such an unravelling in numerical simulations. The test consists of computing the quantum
mean-square deviationσ 2(a) along a quantum trajectory with both the unravelling (31) and
the QSD unravelling. The ensemble averageMσ 2(a) which gives a measure of the size of
the wavepacket as well as the variance Var{σ 2(a)} = M(σ 2(a)−Mσ 2(a))2 which measures
the fluctuations of the wavepacket size are then compared between the two unravellings. The
quantityσ 2(a) is taken here as a measure of the size of the wavepacket since it corresponds
formally to the excitation number of the state displaced at the origin [27]. For a number
state basis, this measure is proportional to the number of basis states needed to represent
the state|ψ〉. The system we used for this test is a kicked anharmonic oscillator

H = ih̄β(t)(a† − a)+ 1
2h̄χa

†2a2 (34)

subject to dissipationL = √κa. The drivingβ(t) is a periodic sequence of rectangular
pulses of heightβ0, length τ1 and separationτ2. In this case the Hamiltonian can also
play an important role in the localization process. This system has been considered in
previous publications [38, 39, 35] as a simple example of a chaotic system. In conjunction
with this system, the scaling transformations:t̃ = λt , κ̃ = κ/λ, β̃0 = β0, χ̃ = χ/λ3 have
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Figure 5. Ensemble average (a) and variance (b) of the quantum mean-square deviationσ 2(a)

versus the scaling parameterλ for the kicked anharmonic oscillator. The upper curve corresponds
to the QSD unravelling and the lower curve to the time-dependent unravelling (31). The error
bars take into account statistical as well as numerical accuracy uncertainties.

been introduced. This scaling of the parameters does not affect the classical dynamics but
when it is introduced in the quantum equations of motion, it allows one to perform the
quantum-classical transition, by varyingλ from λ = 1 (quantum) toλ → ∞ (classical).
Here we use this transformation for a different purpose. In the quantum limit, nonlinear
effects produce a strong delocalization which cannot be compensated by the localization
effect of the dissipation. In the classical limit, in contrast, localization is expected to be
dominant. Thus varying the scaling factor allows us to tune the relative strength of the
delocalization.

In figure 5, the ensemble average and variance of the quantum mean-square deviation
σ 2(a) are represented for different values of the scaling parameterλ. The values represented
are stationary results obtained by integrating the equations of motions over typically 2500
periods and taking the mean over a single trajectory. Such a long integration in time
is necessary in order to obtain a proper average over the strange attractor of the chaotic
system. The system parameters are set to the following valuesχ = 1, β0 = 2, κ = 0.5,
τ1 = 0.98 andτ2 = 1 for which the classical system is known to be chaotic. The precision
of the numerical results is estimated by repeating the calculations for different numerical
parameters such as the time step size.

Figure 5(a) shows for both unravellings a slowly decaying ensemble averageMσ 2(a)

for an increasing value of the scalingλ. Note that the amplitude of motion rescales as
λ thus the ratioσ 2(a)/M〈a†a〉 tends towards zero whenλ → ∞, providing a numerical
justification for the emergence of the classical attractor. Furthermore, figure 5(a) shows that
the unravelling (31) reduces, compared with the QSD unravelling, the stationary value of
the mean size of the wavepacket. The reduction can be up to 20% depending on the scale
parameterλ, the largest reduction being achieved in the quantum regime.

More important is the reduction of the size of the fluctuations shown in figure 5(b).
The picture suggested is that each time the wavepacket deviates from a coherent state the
QSD unravelling tends to restore the shape by applying a homogeneous noise, while the
unravelling (31) adapts by applying a non-homogeneous noise in the direction of the largest
deviation. This adaptability does not produce an important reduction of the wavepacket size
but can stabilize the wavepacket more efficiently as compared with QSD.
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4. Discussion

We have introduced the set of continuous unravellings which recovers in mean the master
equation in Lindblad form and preserves the norm of the state vector. The quantum-state
diffusion unravelling is a member of this set, being the simplest which preserves the same
invariance properties under unitary transformations as the density matrix. We have seen that
each single unravelling can be specified very simply by the choice of the noise correlations
thus providing a natural classification. For theoretical purposes, it is useful to work with
the full set of continuous unravellings since it allows one to study how quantities which
depend on the choice of the unravelling are sensitive to this choice.

As a first application, we have studied the localization properties when only a single
Lindblad operator is present. In the case of a Hermitian operator, the highest localization
rate of the RN unravelling as well as the absence of localization of the imaginary-noise
unravelling have been recovered and explained in a consistent way. For a non-Hermitian
operator, namely the annihilation operator, a new time-dependent unravelling has been
introduced. It is shown analytically that this unravelling provides the highest localization
rate for squeezed states and numerically that this property is also valid for more complex
quantum states. This unravelling maximizes the localization by continuously adjusting
the phase noise according to the shape of the wavepacket. This study provides a better
understanding of the localization. For instance, the QSD unravelling is known to have good
localization properties due to its invariance corresponding, in some sense, to a homogeneous
distribution of noise. We have seen that the localization rate can be increased by maximizing
the norm of the noise correlation factor and continuously adjusting its phase, this last
constraint leading to the introduction of a time-dependent unravelling.

Since the new unravelling increases localization, it is a good candidate for numerical
simulations of quantum trajectories and for the solution of the master equation. A numerical
comparison of the wavepacket size and fluctuations between QSD and the new unravelling
shows that the new unravelling performs better than QSD by stabilizing the size of the
wavepacket.

In connection with the study of the quantum-classical transition, a recent work by Brun
et al [27] has shown that the QJ unravelling tends to a continuous unravelling. It can be
easily seen that this unravelling is a member of the set introduced in the present paper.
We have shown that for a simple quantum system subject to dissipation all members of
the set of continuous unravellings localize with a minimal rate given by the dissipation
rate, making localization a general property valid for all unravellings instead of only some
particular ones.
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Appendix. Properties of the noise correlations

In the case of a linear combination of two Wiener processesN = 2, the noise term dζ
is specified by the two complex numbersα1 and α2 which we write asα1 = ρ1eiφ1 and
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α2 = ρ2eiφ2. The noise correlation factor becomes

c =
∑

n α
2
n∑

n |αn|2
= ρ2

1e2iφ1 + ρ2
2e2iφ2

ρ2
1 + ρ2

2

.

UsingR = ρ2/ρ1 andθ = 2(φ2− φ1), this complex number can be rewritten as

c = e2iφ1
1+ R2eiθ

1+ R2
.

If φ1 = 0 andR are kept constant andθ is varied, the denominator will give a circle in
the complex plane, centred at(1, 0) and of radiusR2. The denominator will restrict the
circle to be inside the unit disk, centred at the origin. The phaseφ1 produces only a rotation
around the origin. Thus the numberc can take any value inside the unit circle only:|c| 6 1.
Furthermore, this result can be generalized without difficulty for an arbitrary numberN of
noise terms.
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